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In this paper we show that with the help of the Marcinkiewicz average of
orthogonal projections on multiresolution approximation of L”(R") for p <1 built
by a box spline one can construct equivalent metric in Hardy spaces. To prove this
equivalence we generalize Fefferman-Stein theorem for discrete choice of param-
eter ¢. It turns out that the Marcinkiewicz average of the Ciesielski-Diirmeyer
operator has similar properties as orthogonal projection.  © 1997 Academic Press

1. INTRODUCTION

Following the ideas of Ciesielski [C1] in a Hardy space H'(T), we
prove that Marcinkiewicz’ average is also a useful tool in Hardy space
H?(R™). With the help of Marcinkiewicz’ average of orthogonal projections
on multiresolution approximation of L”(R"), 0 <p <1, built by a suffi-
ciently smooth box spline we introduce an equivalent H”-metric in H”(R").
The crucial step in this construction is a generalization of the Fefferman—
Stein theorem for discrete choice of parameter ¢, namely ¢ belongs to
powers of 2. Note that the convergence of orthogonal projection in H”-
metric by application of Franklin system was proved in [S] for H?(R")
and for H?(T") in [ W]. In fact, it was proved that the Franklin system
forms an unconditional basis in Hardy spaces. The rates of convergence
were treated in [O].

First we recall the definition and properties of a box spline. Let V' be
a family of vectors from Z"\0,

such that
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MULTIRESOLUTION APPROXIMATION 155

Throughout this paper it is assumed that 7 is unimodular, i.e.,
Vyer #X=n then |det X| <1, (L.1)

where # X denotes the cardinality of X. A box spline associated with V is
then defined as a function for which the relation

fwf(x) B(x| V) dx=f[0’]lyf< 3 uiui> du (1.2)

i=1
holds for all continuous f on R”".

Let
op=max{r:Vy_, #X=r, span{ V\X} =R"}.

It is known that
B(-| VYeCeV—t— e,

Let V, be the closed subspace of L*(R") spanned by integer translates of
the box spline B(-| V), i.e.,

Vo=span {B(-—oa| V). aeZ"} (1.3)
and let us introduce, for 0 <p <1, the closed subspace of L”(R")
Vi =span,,{B(-—o | V):aeZ"}. (1.4)

It is known that the assumption that ¥ is unimodular implies that the
integer translates of the box spline B(-—oa | V): e Z" constitute a Riesz
basis in V.

Introduce the scaling operator ¢ and the shift operator t:

. f=fn-) for neR
and respectively
7, f(x)=f(x—1) for teR
Let
V=05V, Vi=a,V§, JjeZ.

From the (50) Theorem in Section 5 of [BHR] we have that the

sequence (V;);., of closed subspaces of L*(R") forms a multiresolution

approximation of L*(R"), ie.,
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(i) V,cV;,, forjez,
(i) feV,=f(-—2" ’oc)eror]eZ and ae Z",
) feV,=f(2-)eV,

(iv) there is linear isomorphism from /? onto ¥V, which commutes
with the shift operators 7, a e Z”,

(v) njez Vj:(),
(vi) Ujcz V;is dense in L*(R").

(i1

Let us note that respectively
(V%);e z forms the multiresolution approximation of L”(R”) for 0 <p<1.

Let us outline the proof in the case of (iv). Since 0 <p <1, we see that

Jo

dx<J S la,B(x—o | V)|7dx

n
R" y e zn

Y a,B(x—al|V)

aeZ"

< (H 2: |aa|{

aeZ"

where

C, :jB(x | V)” dx.

On the other hand, V is unimodular hence the sequence of functions

{B(_O(l V)}oceZ”

is locally linearly independent, see [ BHR, (57) Theorem ]. In particular, all
integer shifts of B(- | V') having support with non-void intersection with the
cube [0, 1]" are linearly independent. From this we conclude that there are
constants C, >0, 7€ R” and N > 0 such that

G Y lalr<|
Lo, 13"

lo—nl <N

Y a,B(x—al V)p

aeZ"

dx.

Thus for all pe 2",

c, Y Iaalpéf Y a,B( dx
la —np—Bl <N [0, 11"+ B | yezn
Finally,
¥
2N)"Cy Y a, |ﬂ<j a,B(x—al|V)| dx. 1
aeZ" R" an”
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Let us introduce the orthogonal projections onto multiresolution
analysis

P L*(R") >V,

J

(1.5)
for je Z. Note that
Pi=0,-iPy(02f).

If ¢, is large, by applying the formula for P; it is easy to check that these
operators, considered as acting from the Hardy space H?(R") to L?(R"),

P;: H(R") - Vi =span,,{B(-—a | V) aeZ"}

are continuous. As usual, [ x] denotes the integer part of x.
The main result of this paper is the following box spline maximal func-
tion characterization of H”(R").

MAIN THEOREM 1.6. Let 0<p<1 and 9, —1>=3[n/p], then there are
constants C,, C, >0 depending on p such that for all distribution f from the
Hardy space H?(R")

Co 1 f N gr < | sup

JEZ

<Gy 1 f Ml

LP(R™)

Jio ) T PSS

This theorem follows from Theorems 2.2, 3.9, and 3.10 in the paper.

2. HARDY SPACES

The following theorem generalizes the well known Fefferman—Stein
results. For convenience introduce for >0

L,(x)=1/t"L(x/1).

A function L (resp., a sequence {C,}) decays exponentially if there are
constants C>0 and 0 <¢ <1 such that

L)< g™, xeR”,
and resp.,
|C,| < Cq'™, aeZ"
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The function L is refinable if for all me N\O there is a mask {C”},.,»
decaying exponentially such that

L(x)= ) C”L(mx—o). (2.1)

aeZ"

THEOREM 2.2. Assume that there is a function Le CU"PY(R"™) which
decays exponentially with all its admissible derivatives, is refinable, and for
which

L(0)#0.
Then there are constants C,, C, >0 depending on p such that

Co 1S o < [[sup [ Ly *.f|”Ll’(R”) <G 1 f | o

jeZ

From [ FS] we infer that quasi-norm in Hardy spaces may be defined by
a function @ € C*(R"), where k is large enough (for example, k >3[n/p]),
decaying exponentially with its admissible derivatives,

#(0) #0,
by formula
A e =11 sup @, f(Y) Locgn (2.3)
[-—yl<t

for all fe H?. This metric is equivalent with

I £ 1l o~ | sup |, *f|”Ll’([R")' (2.4)

0<t
Our task is to change continuous parameter € R into discrete
te{2/:jeZ} (2.5)
if we assume that ¢ is refinable.
Proof of Theorem 2.2. Every interval
[1/27+1 1/2™] meZ
we divide into 2* equal parts:
127 =<t < o <th=1/2"

and
w254

J :2m+k+1

j=0,1,..,2%
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Let
Wk == U {t81, ceey lgnk}.

We choose k later. We show that

/1l o ~ Il sup |L, *f|”LP(IR”)-

te Wy

On the one side it is obvious. Fix x e R”, fe H”(R") and set

h(t)=L,*f(x).
Then

(1) =(—n/t) h (1) — (1/1) K, * f(x),
where

t 0
K0)= X vz ()

i=1

Lagrange’s Theorem implies that for

telt, 17,]
we have
|h (1) —h (/)] <1257+ sup  [H(s)].

m m
se[tj, I/Jr]]

Consequently

7o () = h () <nj2* sup  |h(s)] +1/2" sup |K, = f(x)].

m o m
sele 1] 0<t

Taking supremum we get

159

sup ()| < Ih () +n/2°  sup  [h(s)] +1/2" sup |K, = f(x)].

se[ ¢

mom
Jj> /+1]

A\'E[r/ t

s tir] o<t

Hence

(1—=n/2%)  sup  |h(s)] < sup |h(1)]+1/2°sup [K, * f(x)].

,ve[t]’.”,tl'7ﬂrl] te Wy 0<t

Then

(1=n/2%)sup L, f(x)] < sup |L, *f(x)| +1/2 sup |K, * f(x)].

s>0 te Wy 0<t
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Integrating over R” we obtain

1/p
(1—n/2%) < [ supIL,+ fx)1” dx)

R" 0 <1

1/p Up
=2lr-1 <<J sup |Lt*f(x)|1]dx> +1/2% <J sup |Kt*f(x)|pdx> >

"te Wy To<t

From the Fefferman-Stein Theorem we infer that there is a constant
C(L, K) such that

[sup |K, = f] HL/’(R") < C(L,K) |[sup |L, * f] ”LT’(R”)-

0<1t 0<rt

Consequently

Isup [L, # f () 2wy

0<t

n+2"=1C(L, K)
1— 5

<27~V sup [L, * f()|] Logwn-
te Wy

Now it is clear that we choose k such that
n+27-1C(L, K) <2k,
Now it is sufficient to prove that

| sup |L,; *f|HLP(R”) ~ | sup |L, *f|HLP([R”)~

JjezZ te Wi

Let te W, then
1=(2"+q)2"

for certain 1< q<2*. Let m=2"+¢. From (2.1) we see that

L, = fx)l < X |CY/t"Lim - [t —a) = f(x))]

< Y |C /e L(mt(- — tofm)) % f(x))]
< Z |CZ1/anr/m('_l°(/m) *f(x)|

Note that
time{2/:jeZ}.
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From this and the fact 0 <p <1, denoting C, =max,, |C7, it follows that

sup |L,# f(x)[7< Y |C,- 277 sup |Lyi((- —27a)) = f(x)| 7.

te Wi aeZ" JjeZ
Integrating both sides we get

f sup |L,  f(x)]? dx< Y |c1.2*"’<|ﬂj sup | L, % f(x — 270)|” dx.
R R

"te Wi aez" "jez

<Y G277 [ sup sup  [Lyxf(p)]” dx.

aez” R" jeZ |y—x|<2/]al
From Lemma 1 [FS pg. 166] with the obvious changes we obtain

[, sup 1L xf))” d

"te Wy

<C Y G277 1" [ sup sup [Lysf(p)]7 dy,

aeZ" R" jez |y—x|<2/
C" decays exponentially. Therefore C, decays that way, too. Consequently
j sup |L, * f(x)|? dx < Cf sup  sup |L,ixf(»)|” dx.
R" re Wy R" jez |y—x|<2/
From the Fefferman—Stein Theorem 11 (page 183) with discrete choice of
t we conclude that
| sup L, f(x)|7 dx < C [ sup Ly » f(x)]7 dx
R" re Wi R" jez

which finishes the proof. ||

3. MARCINKIEWICZ’ AVERAGE
One of the known properties of the box splines is the following fact.

THEOREM 3.1 [DDL]. Let 9, =1. Then for each me N\O there is a
finite sequence of coefficients (b"') such that

B(x| V)= ) brBmx—ol|V).

aeZ"
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Let us introduce a trigonometric polynomial P

P(x)= ) Bla|Y)e™ ™, (3.2)

aeZ"

where a family
Y={V, —V}.

TueoreMm 3.3 [BHR IV (28)]. The family V is unimodular if and only if

V.crn P(x)#0.

The periodic function G =1/P has Fourier expansion

X)= ), g, (3.4)

e Z"

where coefficients decay exponentially [see JM]. Let

=Y g.B(-—a|V). (35)

aeZ"

From construction of the sequence (g,) we conclude that B* is the
biorthogonal function, i.e.

B*eV,

and

j B(x—o| V) B¥(x)dx =0, ,.
.

where ¢ denotes the Kroneker symbol.
The fundamental function O is given by

O(x)=| Blx+y|V)B¥y)dy. (3.6)

R”

From (3.4) and (3.5), it follows that

xX)= ) gB(x—alY) (3.7)
and
B(x|Y)= ) B(a|Y)O(x—a). (3.8)

aeZ"
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THEOREM 3.9. Let 0<p<1 and o,,—1=3[n/p]. Then Marcinkiewicz’

average of the orthogonal projections is represented by the convolution with
the fundamental function, i.e., for all fe H’(R"),

LO 1y T,,P_,—(‘L’,f)(x) dt = (2'/-)" (0’2/'@) *f(x) = @2# *f(x)
Proof. Put
(fg)=] fx)g(x)d

Let fe L*(R"). Then

Piflx)= % (2/)"(fi B¥2/- —a)) B(2/x—a| V).

aeZ"

Hence

Jio 1 BTN 1)

| 277(x, f, B¥(27 —a)) B/ (x+1)—o | V) di
[0. D" yezn

y f 2 £, B¥(27 (-4t —a/27))) B2 (x + 1 — /27 ) | V) d
[0, 1)

aeZ"

=" | (L BH(+0) B+ ) | V) dr
=(2f")2f f flw) BHQ2I(u+ 1)) BRI (x +1)) | V) di du
oy j F(u) O(2x —27u) du=27"f % (65,0)(x).

Since the functions fe H?(R") n L*(R") are dense in H”(R"), this completes
the proof. ||

From (3.7), (3.8), and Theorem 3.1 we have following theorem.
THEOREM 3.10. For all me N\0,

O(x)=> 070(mx —a),
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where the mask decays exponentially, i.e.,
0" < C,,q" aeZ",
for constants C,,>0 and 0 <q < 1. Constant C,, depends on m. Moreover,
6(0) #0.

Remarks. Let us introduce a discrete convolution of given sequences
a={a,} and b={b,}. This is a sequence a * b such that

(axb)s= Y ag b,. (3.11)
aeZ"
Put
ak:a*...*a k}l (312)
k
and
0=1{00.}. (.13)

Let us introduce a class of Ciesielski-Diirmeyer operators. Let r” € N be
a sequence such that

P=0+M+M>+ - +M”,
where a sequence M is given by
M=6—{Bo| )} ,c0m
and Y is the family {V, —V'}.

The Ciesielski—-Diirmeyer operator (quasi-projection) associated with a
family 7 and sequence r” is given by the formula (see [C2])

OV (fy=Y (fiB(-—oa|V)*r’)B(-—a| V),

aeZ"

where

B(-—a|V)xr’= ) rB(-—al|V).

aeZ"

From a paper [ CDR] we infer that when p — oo then

r’—g
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the sequence g being given in (3.4) and

Q" " 2(f) = Po(f)

It is interesting that the properties of projections P; described by
Theorem 1.5 inherit the operators

0" =a,,0"""0,f)

for p =0 and for large p.

4. APPLICATION
We can obtain a nice application of Theorem 1.6 for H'(R"). Namely,

THEOREM 4.1. Let 0= 3n. Then there are constants C,, C, >0 such that
for all functions f from the Hardy space H'(R")

Cy LS M 2 SJ [ sup |Pj(ftf)(')|“Ll(R") dt< Cy | fll .

0. jez

Proof. The left side of inequality is obvious from Theorem 1.6 since

sup
JjezZ

f T,P/T,fdl‘ sf sup |t_, Pz, fldt.
[0’])71 -

[0, )" jez

To prove the right side of the inequality we recall some properties of box
splines. If

.
=, Uy

i=1
then
B(x|V)=B(c,—x|V) (4.2)

From (3.4), (3.5) we obtain that

aeZ"

where a, = B(a | Y). Hence by applying (3.5), (4.2), and fact that ¢, =a_,
we get

B*(x) = B*(c, —x). (4.3)
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By definition
Pof= ) (f,B*-—o)B(-—al| V).

aeZ"

Since B(-| V) is nonnegative function with compact support and

> Bx—a|V)=1

aeZ"

there is an N > 0 such that

1P, f()<| Y (00 fs BX(-—2) BR /x—a| V)

aeZ"

< Y oy i B¥(-—a))l.

|x —2/a| < N2J

From (4.3) we get

1P fol< Y I(f*BE(27a+27c)))l.

|x —2J/a| < N2/
Hence

[sup |ij| HLI([R”)

jez

SN [sup {f # (B*)5i (¥): Ix =y <(N+1lep) 27} | piggny S C | f -

JEZ

Since the norm in Hardy space H' is invariant under translation this com-
pletes the proof. |
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