Multiresolution and Approximation and Hardy Spaces

Marek Beśka and Karol Dziedziul
Department of Numerical Methods, Faculty of Applied Mathematics, Technical University
of Gdańsk, ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland
E-mail: kdz@mifgate.pg.gda.pl
Communicated by R. DeVore

Received August 10, 1994; accepted in revised form February 27, 1996

Abstract

In this paper we show that with the help of the Marcinkiewicz average of orthogonal projections on multiresolution approximation of $L^{p}\left(\mathbb{R}^{n}\right)$ for $p \leqslant 1$ built by a box spline one can construct equivalent metric in Hardy spaces. To prove this equivalence we generalize Fefferman-Stein theorem for discrete choice of parameter t. It turns out that the Marcinkiewicz average of the Ciesielski-Dürmeyer operator has similar properties as orthogonal projection. © 1997 Academic Press

1. INTRODUCTION

Following the ideas of Ciesielski [C1] in a Hardy space $H^{1}(T)$, we prove that Marcinkiewicz' average is also a useful tool in Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$. With the help of Marcinkiewicz' average of orthogonal projections on multiresolution approximation of $L^{p}\left(\mathbb{R}^{n}\right), 0<p \leqslant 1$, built by a sufficiently smooth box spline we introduce an equivalent H^{p}-metric in $H^{p}\left(\mathbb{R}^{n}\right)$. The crucial step in this construction is a generalization of the FeffermanStein theorem for discrete choice of parameter t, namely t belongs to powers of 2 . Note that the convergence of orthogonal projection in $H^{p_{-}}$ metric by application of Franklin system was proved in [S] for $H^{p}\left(\mathbb{R}^{n}\right)$ and for $H^{p}\left(T^{n}\right)$ in [W]. In fact, it was proved that the Franklin system forms an unconditional basis in Hardy spaces. The rates of convergence were treated in [O].

First we recall the definition and properties of a box spline. Let V be a family of vectors from $\mathbb{Z}^{n} \backslash 0$,

$$
V=v_{1}, \ldots, v_{s}
$$

such that

$$
\begin{equation*}
\operatorname{span}\{V\}=\mathbb{R}^{n} . \tag{154}
\end{equation*}
$$

Throughout this paper it is assumed that V is unimodular, i.e.,

$$
\begin{equation*}
\forall_{X \subset V} \quad \# X=n \quad \text { then } \quad|\operatorname{det} X| \leqslant 1 \text {, } \tag{1.1}
\end{equation*}
$$

where $\# X$ denotes the cardinality of X. A box spline associated with V is then defined as a function for which the relation

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) B(x \mid V) d x=\int_{[0,1]^{s}} f\left(\sum_{i=1}^{s} u_{i} v_{i}\right) d u \tag{1.2}
\end{equation*}
$$

holds for all continuous f on \mathbb{R}^{n}.
Let

$$
\varrho_{V}=\max \left\{r: \forall_{X \subset V} \# X=r, \operatorname{span}\{V \backslash X\}=\mathbb{R}^{n}\right\} .
$$

It is known that

$$
B(\cdot \mid V) \in C^{\varrho V-1}-C^{\varrho V} .
$$

Let V_{0} be the closed subspace of $L^{2}\left(\mathbb{R}^{n}\right)$ spanned by integer translates of the box spline $B(\cdot \mid V)$, i.e.,

$$
\begin{equation*}
V_{0}=\operatorname{span}_{L^{2}}\left\{B(\cdot-\alpha \mid V): \alpha \in \mathbb{Z}^{n}\right\} \tag{1.3}
\end{equation*}
$$

and let us introduce, for $0<p \leqslant 1$, the closed subspace of $L^{p}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
V_{0}^{p}=\operatorname{span}_{L^{p}}\left\{B(\cdot-\alpha \mid V): \alpha \in \mathbb{Z}^{n}\right\} . \tag{1.4}
\end{equation*}
$$

It is known that the assumption that V is unimodular implies that the integer translates of the box spline $B(\cdot-\alpha \mid V): \alpha \in \mathbb{Z}^{n}$ constitute a Riesz basis in V_{0}.

Introduce the scaling operator σ and the shift operator τ :

$$
\sigma_{\eta} f=f(\eta \cdot) \quad \text { for } \quad \eta \in \mathbb{R}
$$

and respectively

$$
\tau_{t} f(x)=f(x-t) \quad \text { for } \quad t \in \mathbb{R}
$$

Let

$$
V_{j}=\sigma_{2^{j}} V_{0}, \quad V_{j}^{p}=\sigma_{2^{j}} V_{0}^{p}, \quad j \in \mathbb{Z} .
$$

From the (50) Theorem in Section 5 of [BHR] we have that the sequence $\left(V_{j}\right)_{j \in Z}$ of closed subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$ forms a multiresolution approximation of $L^{2}\left(\mathbb{R}^{n}\right)$, i.e.,
(i) $V_{j} \subset V_{j+1}$ for $j \in \mathbb{Z}$,
(ii) $f \in V_{j} \Rightarrow f\left(\cdot-2^{-j} \alpha\right) \in V_{j}$ for $j \in \mathbb{Z}$ and $\alpha \in \mathbb{Z}^{n}$,
(iii) $f \in V_{j} \Leftrightarrow f(2 \cdot) \in V_{j+1}$,
(iv) there is linear isomorphism from l^{2} onto V_{0} which commutes with the shift operators $\tau_{\alpha}, \alpha \in \mathbb{Z}^{n}$,
(v) $\bigcap_{j \in \mathbb{Z}} V_{j}=0$,
(vi) $\bigcup_{j \in \mathbb{Z}} V_{j}$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$.

Let us note that respectively
$\left(V_{j}^{p}\right)_{j \in Z}$ forms the multiresolution approximation of $L^{p}\left(\mathbb{R}^{n}\right)$ for $0<p \leqslant 1$.
Let us outline the proof in the case of (iv). Since $0<p \leqslant 1$, we see that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} B(x-\alpha \mid V)\right|^{p} d x & \leqslant \int_{\mathbb{R}^{n}} \sum_{\alpha \in \mathbb{Z}^{n}}\left|a_{\alpha} B(x-\alpha \mid V)\right|^{p} d x \\
& \leqslant C_{1} \sum_{\alpha \in \mathbb{Z}^{n}}\left|a_{\alpha}\right|^{p},
\end{aligned}
$$

where

$$
C_{1}=\int B(x \mid V)^{p} d x
$$

On the other hand, V is unimodular hence the sequence of functions

$$
\{B(\cdot-\alpha \mid V)\}_{\alpha \in \mathbb{Z}^{n}}
$$

is locally linearly independent, see [BHR, (57) Theorem]. In particular, all integer shifts of $B(\cdot \mid V)$ having support with non-void intersection with the cube $[0,1]^{n}$ are linearly independent. From this we conclude that there are constants $C_{2}>0, \eta \in \mathbb{R}^{n}$ and $N>0$ such that

$$
C_{2} \sum_{|\alpha-\eta|<N}\left|a_{\alpha}\right|^{p} \leqslant \int_{[0,1]^{n}}\left|\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} B(x-\alpha \mid V)\right|^{p} d x .
$$

Thus for all $\beta \in \mathbb{Z}^{n}$,

$$
C_{2} \sum_{|\alpha-\eta-\beta|<N}\left|a_{\alpha}\right|^{p} \leqslant \int_{[0,1]^{n}+\beta}\left|\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} B(x-\alpha \mid V)\right|^{p} d x .
$$

Finally,

$$
(2 N)^{n} C_{2} \sum_{\alpha \in \mathbb{Z}^{n}}\left|a_{\alpha}\right|^{p} \leqslant \int_{\mathbb{R}^{n}}\left|\sum_{\alpha \in \mathbb{Z}^{n}} a_{\alpha} B(x-\alpha \mid V)\right|^{p} d x .
$$

Let us introduce the orthogonal projections onto multiresolution analysis

$$
\begin{equation*}
P_{j}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow V_{j} \tag{1.5}
\end{equation*}
$$

for $j \in \mathbb{Z}$. Note that

$$
P_{j}=\sigma_{2-j} P_{0}\left(\sigma_{2 i} f\right) .
$$

If ϱ_{v} is large, by applying the formula for P_{j} it is easy to check that these operators, considered as acting from the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$,

$$
P_{j}: H^{p}\left(R^{n}\right) \rightarrow V_{0}^{p}=\operatorname{span}_{L^{p}}\left\{B(\cdot-\alpha \mid V): \alpha \in \mathbb{Z}^{n}\right\}
$$

are continuous. As usual, $[x]$ denotes the integer part of x.
The main result of this paper is the following box spline maximal function characterization of $H^{p}\left(\mathbb{R}^{n}\right)$.

Main Theorem 1.6. Let $0<p \leqslant 1$ and $\varrho_{V}-1 \geqslant 3[n / p]$, then there are constants $C_{1}, C_{2}>0$ depending on p such that for all distribution f from the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$

$$
C_{1}\|f\|_{H^{p}} \leqslant\left\|\sup _{j \in \mathbb{Z}}\left|\int_{[0,1)^{n}} \tau_{-t} P_{j}\left(\tau_{t} f\right)(\cdot) d t\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C_{2}\|f\|_{H^{p}} .
$$

This theorem follows from Theorems 2.2, 3.9, and 3.10 in the paper.

2. HARDY SPACES

The following theorem generalizes the well known Fefferman-Stein results. For convenience introduce for $t>0$

$$
L_{t}(x)=1 / t^{n} L(x / t)
$$

A function L (resp., a sequence $\left\{C_{\alpha}\right\}$) decays exponentially if there are constants $C>0$ and $0<q<1$ such that

$$
|L(x)| \leqslant C q^{|x|}, \quad x \in \mathbb{R}^{n}
$$

and resp.,

$$
\left|C_{\alpha}\right| \leqslant C q^{|\alpha|}, \quad \alpha \in Z^{n}
$$

The function L is refinable if for all $m \in N \backslash 0$ there is a mask $\left\{C_{\alpha}^{m}\right\}_{\alpha \in \mathbb{Z}^{n}}$ decaying exponentially such that

$$
\begin{equation*}
L(x)=\sum_{\alpha \in \mathbb{Z}^{n}} C_{\alpha}^{m} L(m x-\alpha) . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Assume that there is a function $L \in C^{6[n / p]}\left(\mathbb{R}^{n}\right)$ which decays exponentially with all its admissible derivatives, is refinable, and for which

$$
\hat{L}(0) \neq 0
$$

Then there are constants $C_{1}, C_{2}>0$ depending on p such that

$$
C_{1}\|f\|_{H^{p}} \leqslant\left\|\sup _{j \in \mathbb{Z}}\left|L_{2^{j}} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C_{2}\|f\|_{H^{p}}
$$

From [FS] we infer that quasi-norm in Hardy spaces may be defined by a function $\varphi \in C^{k}\left(\mathbb{R}^{n}\right)$, where k is large enough (for example, $k \geqslant 3[n / p]$), decaying exponentially with its admissible derivatives,

$$
\hat{\varphi}(0) \neq 0,
$$

by formula

$$
\begin{equation*}
\|f\|_{H^{p}}=\left\|\sup _{|\cdot-y|<t}\left|\varphi_{t} * f(y)\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{2.3}
\end{equation*}
$$

for all $f \in H^{p}$. This metric is equivalent with

$$
\begin{equation*}
\|f\|_{H^{p}} \sim\left\|\sup _{0<t}\left|\varphi_{t} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} . \tag{2.4}
\end{equation*}
$$

Our task is to change continuous parameter $t \in \mathbb{R}$ into discrete

$$
\begin{equation*}
t \in\left\{2^{j}: j \in \mathbb{Z}\right\} \tag{2.5}
\end{equation*}
$$

if we assume that φ is refinable.
Proof of Theorem 2.2. Every interval

$$
\left[1 / 2^{m+1}, 1 / 2^{m}\right] \quad m \in \mathbb{Z}
$$

we divide into 2^{k} equal parts:

$$
1 / 2^{m+1}=t_{0}^{m}<t_{1}^{m}<\cdots<t_{2^{k}}^{m}=1 / 2^{m}
$$

and

$$
t_{j}^{m}=\frac{2^{k}+j}{2^{m+k+1}} \quad j=0,1, \ldots, 2^{k}
$$

Let

$$
W_{k}=\bigcup_{m}\left\{t_{0}^{m}, \ldots, t_{2^{k}}^{m}\right\} .
$$

We choose k later. We show that

$$
\|f\|_{H^{p}} \sim\left\|\sup _{t \in W_{k}}\left|L_{t} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

On the one side it is obvious. Fix $x \in \mathbb{R}^{n}, f \in H^{p}\left(\mathbb{R}^{n}\right)$ and set

$$
h_{x}(t)=L_{t} * f(x)
$$

Then

$$
h_{x}^{\prime}(t)=(-n / t) h_{x}(t)-(1 / t) K_{t} * f(x)
$$

where

$$
K(y)=\sum_{i=1}^{n} y_{i} \frac{\partial L}{\partial x_{i}}(y) .
$$

Lagrange's Theorem implies that for

$$
t \in\left[t_{j}^{m}, t_{j+1}^{m}\right]
$$

we have

$$
\left|h_{x}(t)-h_{x}\left(t_{j}^{m}\right)\right| \leqslant 1 / 2^{k+m+1} \sup _{s \in\left[t_{j}^{m}, t_{j+1}^{m}\right]}\left|h_{x}^{\prime}(s)\right| .
$$

Consequently

$$
\left|h_{x}(t)-h_{x}\left(t_{j}^{m}\right)\right| \leqslant n / 2^{k} \sup _{s \in\left[t_{j}^{m}, t_{j+1}^{m}\right]}\left|h_{x}(s)\right|+1 / 2^{k} \sup _{0<t}\left|K_{t} * f(x)\right| .
$$

Taking supremum we get

$$
\sup _{s \in\left[t_{j}^{m}, t_{j+1}^{m}\right]}\left|h_{x}(s)\right| \leqslant\left|h_{x}\left(t_{j}^{m}\right)\right|+n / 2^{k} \sup _{s \in\left[t_{j}^{m}, t_{j+1}^{m}\right]}\left|h_{x}(s)\right|+1 / 2^{k} \sup _{0<t}\left|K_{t} * f(x)\right| .
$$

Hence

$$
\left(1-n / 2^{k}\right) \sup _{s \in\left[t_{j}^{m}, t_{j+1}^{m}\right]}\left|h_{x}(s)\right| \leqslant \sup _{t \in W_{k}}\left|h_{x}(t)\right|+1 / 2^{k} \sup _{0<t}\left|K_{t} * f(x)\right| .
$$

Then

$$
\left(1-n / 2^{k}\right) \sup _{s>0}\left|L_{s} * f(x)\right| \leqslant \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|+1 / 2^{k} \sup _{0<t}\left|K_{t} * f(x)\right| .
$$

Integrating over \mathbb{R}^{n} we obtain

$$
\begin{aligned}
& \left(1-n / 2^{k}\right)\left(\int_{\mathbb{R}^{n}} \sup _{0<t}\left|L_{t} * f(x)\right|^{p} d x\right)^{1 / p} \\
& =2^{1 / p-1}\left(\left(\int_{\mathbb{R}^{n}} \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} d x\right)^{1 / p}+1 / 2^{k}\left(\int_{\mathbb{R}^{n}} \sup _{0<t}\left|K_{t} * f(x)\right|^{p} d x\right)^{1 / p}\right) .
\end{aligned}
$$

From the Fefferman-Stein Theorem we infer that there is a constant $C(L, K)$ such that

$$
\left\|\sup _{0<t}\left|K_{t} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C(L, K)\left\|\sup _{0<t}\left|L_{t} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Consequently

$$
\begin{aligned}
(1- & \left.\frac{n+2^{1 / p-1} C(L, K)}{2^{k}}\right)\left\|\sup _{0<t}\left|L_{t} * f(x)\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \leqslant 2^{1 / p-1}\left\|\sup _{t \in W_{k}}\left|L_{t} * f(x)\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Now it is clear that we choose k such that

$$
n+2^{1 / p-1} C(L, K)<2^{k} .
$$

Now it is sufficient to prove that

$$
\left\|\sup _{j \in \mathbb{Z}}\left|L_{2^{j}} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \sim\left\|\sup _{t \in W_{k}}\left|L_{t} * f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Let $t \in W_{k}$, then

$$
t=\left(2^{k}+q\right) / 2^{k+i}
$$

for certain $1 \leqslant q \leqslant 2^{k}$. Let $m=2^{k}+q$. From (2.1) we see that

$$
\begin{aligned}
\left|L_{t} * f(x)\right| & \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha}^{m} / t^{n} L(m \cdot / t-\alpha) * f(x)\right| \\
& \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha}^{m} / t^{n} L(m / t(\cdot-t \alpha / m)) * f(x)\right| \\
& \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha}^{m} / m^{n} L_{t / m}(\cdot-t \alpha / m) * f(x)\right| .
\end{aligned}
$$

Note that

$$
t / m \in\left\{2^{j}: j \in \mathbb{Z}\right\} .
$$

From this and the fact $0<p \leqslant 1$, denoting $C_{\alpha}=\max _{m} \mid C_{\alpha}^{m}$, it follows that

$$
\sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha} \cdot 2^{-n k}\right|^{p} \sup _{j \in \mathbb{Z}}\left|L_{2^{j}}\left(\left(\cdot-2^{j} \alpha\right)\right) * f(x)\right|^{p} .
$$

Integrating both sides we get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} d x & \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha} \cdot 2^{-n k}\right|^{p} \int_{\mathbb{R}^{n}} \sup _{j \in \mathbb{Z}}\left|L_{2^{j}} * f\left(x-2^{j} \alpha\right)\right|^{p} d x . \\
& \leqslant \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha} \cdot 2^{-n k}\right|^{p} \int_{\mathbb{R}^{n}} \sup _{j \in \mathbb{Z}} \sup _{|y-x| \leqslant 2^{j}}\left|L_{2^{j} \mid} * f(y)\right|^{p} d x .
\end{aligned}
$$

From Lemma 1 [FS pg. 166] with the obvious changes we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} d x \\
& \quad \leqslant C \sum_{\alpha \in \mathbb{Z}^{n}}\left|C_{\alpha} \cdot 2^{-n k}\right|^{p}|\alpha|^{n / p} \int_{\mathbb{R}^{n}} \sup _{j \in \mathbb{Z}} \sup _{|y-x|<2^{j}}\left|L_{2^{j}} * f(y)\right|^{p} d x,
\end{aligned}
$$

C_{α}^{m} decays exponentially. Therefore C_{α} decays that way, too. Consequently

$$
\int_{\mathbb{R}^{n}} \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} d x \leqslant C \int_{\mathbb{R}^{n}} \sup _{j \in \mathbb{Z}} \sup _{|y-x|<2^{j}}\left|L_{2^{j}} * f(y)\right|^{p} d x .
$$

From the Fefferman-Stein Theorem 11 (page 183) with discrete choice of t we conclude that

$$
\int_{\mathbb{R}^{n}} \sup _{t \in W_{k}}\left|L_{t} * f(x)\right|^{p} d x \leqslant C \int_{\mathbb{R}^{n}} \sup _{j \in \mathbb{Z}}\left|L_{2^{j}} * f(x)\right|^{p} d x
$$

which finishes the proof.

3. MARCINKIEWICZ' AVERAGE

One of the known properties of the box splines is the following fact.
Theorem 3.1 [DDL]. Let $\varrho_{V} \geqslant 1$. Then for each $m \in N \backslash 0$ there is a finite sequence of coefficients $\left(b_{\alpha}^{m}\right)$ such that

$$
B(x \mid V)=\sum_{\alpha \in \mathbb{Z}^{n}} b_{\alpha}^{m} B(m x-\alpha \mid V) .
$$

Let us introduce a trigonometric polynomial P

$$
\begin{equation*}
P(x)=\sum_{\alpha \in \mathbb{Z}^{n}} B(\alpha \mid Y) e^{2 \pi i \alpha \cdot x}, \tag{3.2}
\end{equation*}
$$

where a family

$$
Y=\{V,-V\} .
$$

Theorem 3.3 [BHR IV (28)]. The family V is unimodular if and only if

$$
\forall_{x \in \mathbb{R}^{n}} P(x) \neq 0 .
$$

The periodic function $G=1 / P$ has Fourier expansion

$$
\begin{equation*}
G(x)=\sum_{\alpha \in \mathbb{Z}^{n}} g_{\alpha} e^{2 \pi i \alpha \cdot x}, \tag{3.4}
\end{equation*}
$$

where coefficients decay exponentially [see JM]. Let

$$
\begin{equation*}
B^{*}(x)=\sum_{\alpha \in \mathbb{Z}^{n}} g_{\alpha} B(\cdot-\alpha \mid V) . \tag{3.5}
\end{equation*}
$$

From construction of the sequence $\left(g_{\alpha}\right)$ we conclude that B^{*} is the biorthogonal function, i.e.

$$
B^{*} \in V_{0}
$$

and

$$
\int_{\mathbb{R}^{n}} B(x-\alpha \mid V) B^{*}(x) d x=\delta_{0, \alpha},
$$

where δ denotes the Kroneker symbol.
The fundamental function Θ is given by

$$
\begin{equation*}
\Theta(x)=\int_{\mathbb{R}^{n}} B(x+y \mid V) B^{*}(y) d y . \tag{3.6}
\end{equation*}
$$

From (3.4) and (3.5), it follows that

$$
\begin{equation*}
\Theta(x)=\sum_{\alpha \in Z^{n}} g_{\alpha} B(x-\alpha \mid Y) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B(x \mid Y)=\sum_{\alpha \in Z^{n}} B(\alpha \mid Y) \Theta(x-\alpha) . \tag{3.8}
\end{equation*}
$$

Theorem 3.9. Let $0<p \leqslant 1$ and $\varrho_{V}-1 \geqslant 3[n / p]$. Then Marcinkiewicz' average of the orthogonal projections is represented by the convolution with the fundamental function, i.e., for all $f \in H^{p}\left(\mathbb{R}^{n}\right)$,

$$
\int_{[0,1)^{n}} \tau_{-t} P_{j}\left(\tau_{t} f\right)(x) d t=\left(2^{j}\right)^{n}\left(\sigma_{2^{j}} \Theta\right) * f(x)=\Theta_{2-j} * f(x) .
$$

Proof. Put

$$
(f, g)=\int_{\mathbb{R}^{n}} f(x) g(x) d x .
$$

Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Then

$$
P_{j} f(x)=\sum_{\alpha \in Z^{n}}\left(2^{j}\right)^{n}\left(f, B^{*}\left(2^{j} \cdot-\alpha\right)\right) B\left(2^{j} x-\alpha \mid V\right) .
$$

Hence

$$
\begin{aligned}
\int_{[0,1)^{n}} & \left(P_{j}\left(\tau_{t} f\right)\right)(x+t) d t \\
& =\int_{[0,1)^{n}} \sum_{\alpha \in Z^{n}} 2^{j n}\left(\tau_{t} f, B^{*}\left(2^{j} \cdot-\alpha\right)\right) B\left(2^{j}(x+t)-\alpha \mid V\right) d t \\
& =\sum_{\alpha \in Z^{n}} \int_{[0,1)^{n}} 2^{j n}\left(f, B^{*}\left(2^{j}\left(\cdot+t-\alpha / 2^{j}\right)\right)\right) B\left(2^{j}\left(x+t-\alpha / 2^{j}\right) \mid V\right) d t \\
& =\left(2^{j n}\right)^{2} \int_{\mathbb{R}^{n}}\left(f, B^{*}\left(2^{j}(\cdot+t)\right)\right) B\left(2^{j}(x+t) \mid V\right) d t \\
& \left.=\left(2^{j n}\right)^{2} \int_{\mathbb{R}^{n}} \int_{R^{n}} f(u) B^{*}\left(2^{j}(u+t)\right) B\left(2^{j}(x+t)\right) \mid V\right) d t d u \\
& =2^{j n} \int_{\mathbb{R}^{n}} f(u) \Theta\left(2^{j} x-2^{j} u\right) d u=2^{j n} f *\left(\sigma_{2^{j}} \Theta\right)(x) .
\end{aligned}
$$

Since the functions $f \in H^{p}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ are dense in $H^{p}\left(\mathbb{R}^{n}\right)$, this completes the proof.

From (3.7), (3.8), and Theorem 3.1 we have following theorem.
Theorem 3.10. For all $m \in N \backslash 0$,

$$
\Theta(x)=\sum_{\alpha} \theta_{\alpha}^{m} \Theta(m x-\alpha),
$$

where the mask decays exponentially, i.e.,

$$
\left|\theta_{\alpha}^{m}\right| \leqslant C_{m} q^{|\alpha|} \quad \alpha \in \mathbb{Z}^{n},
$$

for constants $C_{m}>0$ and $0<q<1$. Constant C_{m} depends on m. Moreover,

$$
\hat{\Theta}(0) \neq 0 .
$$

Remarks. Let us introduce a discrete convolution of given sequences $a=\left\{a_{\alpha}\right\}$ and $b=\left\{b_{\alpha}\right\}$. This is a sequence $a * b$ such that

$$
\begin{equation*}
(a * b)_{\beta}=\sum_{\alpha \in \mathbb{Z}^{n}} a_{\beta-\alpha} b_{\alpha} . \tag{3.11}
\end{equation*}
$$

Put

$$
\begin{equation*}
a^{k}=\underbrace{a * \cdots * a}_{k} \quad k \geqslant 1 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\left\{\delta_{0, \alpha}\right\} . \tag{3.13}
\end{equation*}
$$

Let us introduce a class of Ciesielski-Dürmeyer operators. Let $r^{\rho} \in N$ be a sequence such that

$$
r^{\rho}=\delta+M+M^{2}+\cdots+M^{\rho}
$$

where a sequence M is given by

$$
M=\delta-\{B(\alpha \mid Y)\}_{\alpha \in \mathbb{Z}^{n}}
$$

and Y is the family $\{V,-V\}$.
The Ciesielski-Dürmeyer operator (quasi-projection) associated with a family V and sequence r^{ρ} is given by the formula (see [C2])

$$
Q^{V, V, \rho}(f)=\sum_{\alpha \in \mathbb{Z}^{n}}\left(f, B(\cdot-\alpha \mid V) * r^{\rho}\right) B(\cdot-\alpha \mid V),
$$

where

$$
B(\cdot-\alpha \mid V) * r^{\rho}=\sum_{\alpha \in \mathbb{Z}^{n}} r_{\alpha}^{\rho} B(\cdot-\alpha \mid V) .
$$

From a paper [CDR] we infer that when $\rho \rightarrow \infty$ then

$$
r^{\rho} \rightarrow g
$$

the sequence g being given in (3.4) and

$$
Q^{V, V, \rho}(f) \rightarrow P_{0}(f) .
$$

It is interesting that the properties of projections P_{j} described by Theorem 1.5 inherit the operators

$$
Q_{j}^{V, V, \rho}=\sigma_{2-j} Q^{V, V, \rho}\left(\sigma_{2 i} f\right)
$$

for $\rho=0$ and for large ρ.

4. APPLICATION

We can obtain a nice application of Theorem 1.6 for $H^{1}\left(\mathbb{R}^{n}\right)$. Namely,

Theorem 4.1. Let $\varrho_{V} \geqslant 3 n$. Then there are constants $C_{1}, C_{2}>0$ such that for all functions f from the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$

$$
C_{1}\|f\|_{H^{1}} \leqslant \int_{[0,1)^{n}}\left\|\sup _{j \in \mathbb{Z}}\left|P_{j}\left(\tau_{t} f\right)(\cdot)\right|\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} d t \leqslant C_{2}\|f\|_{H^{1}} .
$$

Proof. The left side of inequality is obvious from Theorem 1.6 since

$$
\sup _{j \in \mathbb{Z}}\left|\int_{[0,1)^{n}} \tau_{-t} P_{j} \tau_{t} f d t\right| \leqslant \int_{[0,1)^{n}} \sup _{j \in \mathbb{Z}}\left|\tau_{-t} P_{j} \tau_{t} f\right| d t .
$$

To prove the right side of the inequality we recall some properties of box splines. If

$$
c_{V}=\sum_{j=1}^{s} v_{j}
$$

then

$$
\begin{equation*}
B(x \mid V)=B\left(c_{V}-x \mid V\right) \tag{4.2}
\end{equation*}
$$

From (3.4), (3.5) we obtain that

$$
B(\cdot \mid V)=\sum_{\alpha \in Z^{n}} a_{\alpha} B^{*}(\cdot-\alpha \mid V),
$$

where $a_{\alpha}=B(\alpha \mid Y)$. Hence by applying (3.5), (4.2), and fact that $a_{\alpha}=a_{-\alpha}$ we get

$$
\begin{equation*}
B^{*}(x)=B^{*}\left(c_{V}-x\right) . \tag{4.3}
\end{equation*}
$$

By definition

$$
P_{0} f=\sum_{\alpha \in Z^{n}}\left(f, B^{*}(\cdot-\alpha)\right) B(\cdot-\alpha \mid V) .
$$

Since $B(\cdot \mid V)$ is nonnegative function with compact support and

$$
\sum_{\alpha \in Z^{n}} B(x-\alpha \mid V)=1
$$

there is an $N>0$ such that

$$
\begin{aligned}
\left|P_{j} f(x)\right| & \leqslant\left|\sum_{\alpha \in Z^{n}}\left(\sigma_{2^{j}} f, B^{*}(\cdot-\alpha)\right) B\left(2^{-j} x-\alpha \mid V\right)\right| \\
& \leqslant \sum_{\left|x-2^{j} \alpha\right|<N 2^{j}}\left|\left(\sigma_{2^{j}} f, B^{*}(\cdot-\alpha)\right)\right| .
\end{aligned}
$$

From (4.3) we get

$$
\left|P_{j} f(x)\right| \leqslant \sum_{\left|x-2^{j} \alpha\right|<N 2^{j}}\left|\left(f * B_{2_{j}}^{*}\left(2^{j} \alpha+2^{j} c_{V}\right)\right)\right| .
$$

Hence

$$
\begin{aligned}
& \left\|\sup _{j \in \mathbb{Z}}\left|P_{j} f\right|\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \\
& \quad \leqslant N^{n}\left\|\sup _{j \in \mathbb{Z}}\left\{f *\left(B^{*}\right)_{2^{j}}(y):|x-y|<\left(N+\left|c_{V}\right|\right) 2^{j}\right\}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{H^{1}} .
\end{aligned}
$$

Since the norm in Hardy space H^{1} is invariant under translation this completes the proof.

REFERENCES

[BN] M. Z. Berkolaiko and I. Ya. Novikov, Bases of wavelets in spaces of differentiable functions of anisotropic smoothness, Dokl. Akad. Nauk 323, No. 4 (1992), 615-618.
[BHR] C. de Boor, K. Höllig, and S. Riemenschneider, "Box Splines," Springer-Verlag, New York/Berlin, 1993.
[CD] C. K. Chui and H. Diamond, A natural formulation of quasi-interpolation by multivariate splines, Proc. Amer. Math. Soc. 99 (1987), 643-646.
[CDR] C. K. Chui, H. Diamond, and L. A. Raphael, Interpolation by multivariate splines, Math. Comp. 51 (1987), 203-218.
[CJW] C. K. Chui, K. Jetter, and J. D. Ward, Cardinal interpolation by multivariate splines, Math. Comp. 48 (1987), 711-724.
[C1] Z. Ciesielski, Spline bases in spaces of analytic function, in "Canadian Math. Soc. Conference Proceedings," Vol. 3, "Approximation Theory," pp. 81-111, Canadian Math. Soc., 1983.
[C2] Z. Ciesielski, Asymptotic nonparametric spline density estimation in several variables, in "Multivariete Approximation and Interpolation, Duisburg, 1988," Internat. Ser. Number. Math., Vol. 94, pp. 25-53, Birkhäuser, Basel, 1990.
[DDL] W. Dahmen, N. Dyn, and D. Levin, On the convergence rates of subdivision algorithms for box spline surfaces, Constr. Approx. 1 (1985), 305-322.
[FS] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[FJ] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93, No. 1 (1990), 34-170.
[M] S. E. Kelly, M. A. Kon, and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc. 30, No. 1 (1994), 87-94.
[JM] R. Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of prewavelets. II. Power of two, in "Approximation Theory VI" (C. Chui, L. Schumaker, and J. Ward, Eds.), pp. 209-246, Academic Press, New York, 1992.
[M] J. Marcinkiewicz, "Collected Papers; Quelques remarques sur l'interpolation," PWN, Warsawa, 1964.
[O] P. Oswald, Spline approximation in $H_{p}(T), p \leqslant 1$, Studia Math. 81, No. 1 (1985), 13-28.
[S] J. O. Strömberg, A modified Franklin system and higher-order spline system on \mathbb{R}^{n} as unconditional bases for Hardy spaces, in "Conference on Harmonic Analysis in Honor of Antoni Zygmund," Vol. II (W. Beckner et al., Eds.), Wadsworth Math. Ser., pp. 475-494, Wadsworth, Belmont, CA, 1981.
[W] P. Wojtaszczyk, H_{p}-spaces, $p \leqslant 1$, and spline systems, Studia Math. 77 (1984), 289-320.

