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In this paper we show that with the help of the Marcinkiewicz average of
orthogonal projections on multiresolution approximation of Lp(Rn) for p�1 built
by a box spline one can construct equivalent metric in Hardy spaces. To prove this
equivalence we generalize Fefferman�Stein theorem for discrete choice of param-
eter t. It turns out that the Marcinkiewicz average of the Ciesielski�Du� rmeyer
operator has similar properties as orthogonal projection. � 1997 Academic Press

1. INTRODUCTION

Following the ideas of Ciesielski [C1] in a Hardy space H 1(T), we
prove that Marcinkiewicz' average is also a useful tool in Hardy space
Hp(Rn). With the help of Marcinkiewicz' average of orthogonal projections
on multiresolution approximation of Lp(Rn), 0<p�1, built by a suffi-
ciently smooth box spline we introduce an equivalent Hp-metric in Hp(Rn).
The crucial step in this construction is a generalization of the Fefferman�
Stein theorem for discrete choice of parameter t, namely t belongs to
powers of 2. Note that the convergence of orthogonal projection in Hp-
metric by application of Franklin system was proved in [S] for Hp(Rn)
and for Hp(T n) in [W]. In fact, it was proved that the Franklin system
forms an unconditional basis in Hardy spaces. The rates of convergence
were treated in [O].

First we recall the definition and properties of a box spline. Let V be
a family of vectors from Zn"0,

V=v1 , ..., vs

such that

span[V]=Rn.
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Throughout this paper it is assumed that V is unimodular, i.e.,

\X/V *X=n then |det X|�1, (1.1)

where *X denotes the cardinality of X. A box spline associated with V is
then defined as a function for which the relation

|
Rn

f (x) B(x | V ) dx=|
[0, 1] s

f \ :
s

i=1

uivi+ du (1.2)

holds for all continuous f on Rn.

Let

*V=max[r: \X/V *X=r, span[V"X]=Rn].

It is known that

B( } | V ) # C*V&1&C*V.

Let V0 be the closed subspace of L2(Rn) spanned by integer translates of
the box spline B( } | V ), i.e.,

V0=spanL 2 [B( }&: | V): : # Zn] (1.3)

and let us introduce, for 0<p�1, the closed subspace of Lp(Rn)

V p
0=spanL p[B( }&: | V): : # Zn]. (1.4)

It is known that the assumption that V is unimodular implies that the
integer translates of the box spline B( }&: | V): : # Zn constitute a Riesz
basis in V0 .

Introduce the scaling operator _ and the shift operator {:

_' f=f (' } ) for ' # R

and respectively

{t f (x)=f (x&t) for t # R

Let

Vj=_2 j V0 , V p
j =_2 j V p

0 , j # Z.

From the (50) Theorem in Section 5 of [BHR] we have that the
sequence (Vj ) j # Z of closed subspaces of L2(Rn) forms a multiresolution
approximation of L2(Rn), i.e.,
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(i) Vj /Vj+1 for j # Z,

(ii) f # Vj O f ( }&2&j:) # Vj for j # Z and : # Zn,

(iii) f # Vj � f (2 } ) # Vj+1 ,

(iv) there is linear isomorphism from l 2 onto V0 which commutes
with the shift operators {: , : # Zn,

(v) � j # Z Vj=0,

(vi) � j # Z Vj is dense in L2(Rn).

Let us note that respectively

(V p
j ) j # Z forms the multiresolution approximation of Lp(Rn) for 0<p�1.

Let us outline the proof in the case of (iv). Since 0<p�1, we see that

|
R n } :

: # Z n

a:B(x&: | V ) }
p

dx�|
Rn

:
: # Zn

|a:B(x&: | V )| p dx

�C1 :
: # Z n

|a: | p,

where

C1=| B(x | V) p dx.

On the other hand, V is unimodular hence the sequence of functions

[B( }&: | V )]: # Z n

is locally linearly independent, see [BHR, (57) Theorem]. In particular, all
integer shifts of B( } | V ) having support with non-void intersection with the
cube [0, 1]n are linearly independent. From this we conclude that there are
constants C2>0, ' # Rn and N>0 such that

C2 :
|:&'| <N

|a: | p�|
[0, 1] n } :

: # Z n

a:B(x&: | V )}
p

dx.

Thus for all ; # Zn,

C2 :
|:&'&;| <N

|a: | p�|
[0, 1] n+; } :

: # Z n

a:B(x&: | V)}
p

dx.

Finally,

(2N)nC2 :
: # Zn

|a: | p�|
R n } :

: # Z n

a:B(x&: | V ) }
p

dx. K
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Let us introduce the orthogonal projections onto multiresolution
analysis

Pj : L2(Rn) � Vj (1.5)

for j # Z. Note that

Pj=_2 & j P0(_2 j f ).

If *v is large, by applying the formula for Pj it is easy to check that these
operators, considered as acting from the Hardy space Hp(Rn) to Lp(Rn),

Pj : Hp(Rn) � V p
0=spanL p [B( }&: | V ): : # Zn]

are continuous. As usual, [x] denotes the integer part of x.
The main result of this paper is the following box spline maximal func-

tion characterization of Hp(Rn).

Main Theorem 1.6. Let 0<p�1 and *V&1�3[n�p], then there are
constants C1 , C2>0 depending on p such that for all distribution f from the
Hardy space Hp(Rn)

C1 & f &H p�" sup
j # Z } |[0, 1) n

{&tPj ({tf )( } ) dt }"L p(R n)

�C2 & f &H p .

This theorem follows from Theorems 2.2, 3.9, and 3.10 in the paper.

2. HARDY SPACES

The following theorem generalizes the well known Fefferman�Stein
results. For convenience introduce for t>0

Lt(x)=1�tnL(x�t).

A function L (resp., a sequence [C:]) decays exponentially if there are
constants C>0 and 0<q<1 such that

|L(x)|�Cq |x|, x # Rn,

and resp.,

|C: |�Cq |:|, : # Zn.
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The function L is refinable if for all m # N"0 there is a mask [C m
: ]: # Z n

decaying exponentially such that

L(x)= :
: # Zn

C m
: L(mx&:). (2.1)

Theorem 2.2. Assume that there is a function L # C6[n�p](Rn) which
decays exponentially with all its admissible derivatives, is refinable, and for
which

L� (0){0.

Then there are constants C1 , C2>0 depending on p such that

C1 & f &Hp�&sup
j # Z

|L2 j V f |&L p(R n)�C2 & f &Hp .

From [FS] we infer that quasi-norm in Hardy spaces may be defined by
a function . # Ck(Rn), where k is large enough (for example, k�3[n�p]),
decaying exponentially with its admissible derivatives,

.̂(0){0,

by formula

& f &H p=& sup
| }&y |<t

|.t V f ( y )|&L p(R n) (2.3)

for all f # Hp. This metric is equivalent with

& f &H pt&sup
0<t

|.t V f |&Lp( R n) . (2.4)

Our task is to change continuous parameter t # R into discrete

t # [2 j : j # Z] (2.5)

if we assume that . is refinable.

Proof of Theorem 2.2. Every interval

[1�2m+1, 1�2m] m # Z

we divide into 2k equal parts:

1�2m+1=tm
0 <tm

1 < } } } <tm
2k=1�2m

and

tm
j =

2k+j
2m+k+1 j=0, 1, ..., 2k.
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Let

Wk= .
m

[tm
0 , ..., tm

2 k].

We choose k later. We show that

& f &H pt& sup
t # W k

|Lt V f |&Lp(R n) .

On the one side it is obvious. Fix x # Rn, f # Hp(Rn) and set

hx(t)=Lt V f (x).

Then

h$x(t)=(&n�t) hx(t)&(1�t) Kt V f (x),

where

K( y )= :
n

i=1

yi
�L
�xi

( y).

Lagrange's Theorem implies that for

t # [tm
j , tm

j+1]

we have

|hx(t)&hx(tm
j )|�1�2k+m+1 sup

s # [t j
m, t m

j+1]

|h$x(s)|.

Consequently

|hx(t)&hx(tm
j )|�n�2k sup

s # [t j
m, t m

j+1]

|hx(s)|+1�2k sup
0<t

|Kt V f (x)|.

Taking supremum we get

sup
s # [t j

m, t m
j+1]

|hx(s)|�|hx(tm
j )|+n�2k sup

s # [t j
m , tm

j+1]

|hx(s)|+1�2k sup
0<t

|Kt V f (x)|.

Hence

(1&n�2k) sup
s # [t j

m , tm
j+1]

|hx(s)|� sup
t # W k

|hx(t)|+1�2k sup
0<t

|Kt V f (x)|.

Then

(1&n�2k) sup
s>0

|Ls V f (x)|� sup
t # Wk

|Lt V f (x)|+1�2k sup
0<t

|Kt V f (x)|.
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Integrating over Rn we obtain

(1&n�2k) \|R n
sup
0<t

|Lt V f (x)| p dx+
1�p

=21�p&1 \\|R n
sup

t # W k

|Lt V f (x)| p dx+
1�p

+1�2k \|R n
sup
0<t

|Kt V f (x)| p dx+
1�p

+ .

From the Fefferman�Stein Theorem we infer that there is a constant
C(L, K) such that

&sup
0<t

|Kt V f |&L p(R n)�C(L, K) &sup
0<t

|Lt V f |&L p(R n) .

Consequently

\1&
n+21�p&1C(L, K)

2k + &sup
0<t

|Lt V f (x)|&L p(R n)

�21�p&1 & sup
t # W k

|Lt V f (x)|&Lp(R n) .

Now it is clear that we choose k such that

n+21�p&1C(L, K)<2k.

Now it is sufficient to prove that

&sup
j # Z

|L2 j V f |&Lp(R n)t& sup
t # Wk

|Lt V f |&L p( R n) .

Let t # Wk , then

t=(2k+q)�2k+i

for certain 1�q�2k. Let m=2k+q. From (2.1) we see that

|Lt V f (x)|� :
: # Zn

|C m
: �tnL(m } �t&:) V f (x)|

� :
: # Zn

|C m
: �tnL(m�t( }&t:�m)) V f (x)|

� :
: # Zn

|C m
: �mnLt�m( }&t:�m) V f (x)|.

Note that

t�m # [2 j : j # Z].
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From this and the fact 0<p�1, denoting C:=maxm |Cm
: , it follows that

sup
t # W k

|Lt V f (x)| p� :
: # Z n

|C: } 2&nk| p sup
j # Z

|L2 j (( }&2 j:)) V f (x)| p.

Integrating both sides we get

|
Rn

sup
t # Wk

|Lt V f (x)| p dx� :
: # Z n

|C: } 2&nk| p |
Rn

sup
j # Z

|L2 j V f (x&2 j:)| p dx.

� :
: # Z n

|C: } 2&nk| p |
R n

sup
j # Z

sup
| y&x|�2 j |:|

|L2 j V f ( y )| p dx.

From Lemma 1 [FS pg. 166] with the obvious changes we obtain

|
R n

sup
t # Wk

|Lt V f (x)| p dx

�C :
: # Z n

|C: } 2&nk| p |:|n�p |
R n

sup
j # Z

sup
| y&x|<2 j

|L2 j V f ( y)| p dx,

Cm
: decays exponentially. Therefore C: decays that way, too. Consequently

|
R n

sup
t # W k

|Lt V f (x)| p dx�C |
R n

sup
j # Z

sup
| y&x|<2 j

|L2 j V f ( y )| p dx.

From the Fefferman�Stein Theorem 11 (page 183) with discrete choice of
t we conclude that

|
R n

sup
t # W k

|Lt V f (x)| p dx�C |
R n

sup
j # Z

|L2 j V f (x)| p dx

which finishes the proof. K

3. MARCINKIEWICZ' AVERAGE

One of the known properties of the box splines is the following fact.

Theorem 3.1 [DDL]. Let *V�1. Then for each m # N"0 there is a
finite sequence of coefficients (bm

: ) such that

B(x | V )= :
: # Z n

bm
: B(mx&: | V).
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Let us introduce a trigonometric polynomial P

P(x)= :
: # Z n

B(: | Y ) e2?i: } x, (3.2)

where a family

Y=[V, &V].

Theorem 3.3 [BHR IV (28)]. The family V is unimodular if and only if

\x # R n P(x){0.

The periodic function G=1�P has Fourier expansion

G(x)= :
: # Z n

g:e2?i: } x, (3.4)

where coefficients decay exponentially [see JM]. Let

B*(x)= :
: # Zn

g:B( }&: | V ). (3.5)

From construction of the sequence (g:) we conclude that B* is the
biorthogonal function, i.e.

B* # V0

and

|
Rn

B(x&: | V) B*(x) dx=$0, : ,

where $ denotes the Kroneker symbol.
The fundamental function 3 is given by

3(x)=|
R n

B(x+y | V ) B*( y) dy. (3.6)

From (3.4) and (3.5), it follows that

3(x)= :
: # Zn

g: B(x&: | Y ) (3.7)

and

B(x | Y )= :
: # Zn

B(: | Y ) 3(x&:). (3.8)
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Theorem 3.9. Let 0<p�1 and *V&1�3[n�p]. Then Marcinkiewicz'
average of the orthogonal projections is represented by the convolution with
the fundamental function, i.e., for all f # Hp(Rn),

|
[0, 1) n

{&tPj ({t f )(x) dt=(2 j )n (_2 j 3) V f (x)=32 & j V f (x).

Proof. Put

( f, g)=|
Rn

f (x) g(x) dx.

Let f # L2(Rn). Then

Pj f (x)= :
: # Z n

(2 j )n ( f, B*(2 j } &:)) B(2 jx&: | V ).

Hence

|
[0, 1) n

(Pj ({t f ))(x+t) dt

=|
[0, 1) n

:
: # Zn

2 jn({t f, B*(2 j } &:)) B(2 j (x+t)&: | V ) dt

= :
: # Z n

|
[0, 1)n

2 jn( f, B*(2 j ( }+t&:�2 j ))) B(2 j (x+t&:�2 j ) | V ) dt

=(2 jn)2 |
Rn

( f, B*(2 j ( }+t))) B(2 j (x+t) | V) dt

=(2 jn)2 |
Rn |R n

f (u) B*(2 j (u+t)) B(2 j (x+t)) | V ) dt du

=2 jn |
R n

f (u) 3(2 j x&2 ju) du=2 jn f V (_2 j 3)(x).

Since the functions f # Hp(Rn) & L2(Rn) are dense in Hp(Rn), this completes
the proof. K

From (3.7), (3.8), and Theorem 3.1 we have following theorem.

Theorem 3.10. For all m # N"0,

3(x)=:
:

%m
: 3(mx&:),
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where the mask decays exponentially, i.e.,

|%m
: |�Cmq |:| : # Zn,

for constants Cm>0 and 0<q<1. Constant Cm depends on m. Moreover,

3� (0){0.

Remarks. Let us introduce a discrete convolution of given sequences
a=[a:] and b=[b:]. This is a sequence a V b such that

(a V b);= :
: # Z n

a;&: b: . (3.11)

Put

ak=a V } } } V a
k

k�1 (3.12)

and

$=[$0, :]. (3.13)

Let us introduce a class of Ciesielski�Du� rmeyer operators. Let r\ # N be
a sequence such that

r\=$+M+M 2+ } } } +M\,

where a sequence M is given by

M=$&[B(: | Y )]: # Z n

and Y is the family [V, &V].
The Ciesielski�Du� rmeyer operator (quasi-projection) associated with a

family V and sequence r\ is given by the formula (see [C2])

QV, V, \( f )= :
: # Z n

( f, B( }&: | V) V r\) B( }&: | V),

where

B( }&: | V) V r\= :
: # Zn

r\
: B( }&: | V ).

From a paper [CDR] we infer that when \ � � then

r\ � g

164 BES� KA AND DZIEDZIUL



File: 640J 301912 . By:CV . Date:27:01:97 . Time:13:42 LOP8M. V8.0. Page 01:01
Codes: 2087 Signs: 874 . Length: 45 pic 0 pts, 190 mm

the sequence g being given in (3.4) and

QV, V, \( f ) � P0( f ).

It is interesting that the properties of projections Pj described by
Theorem 1.5 inherit the operators

QV, V, \
j =_2 & j QV, V, \(_2 jf )

for \=0 and for large \.

4. APPLICATION

We can obtain a nice application of Theorem 1.6 for H1(Rn). Namely,

Theorem 4.1. Let *V�3n. Then there are constants C1 , C2>0 such that
for all functions f from the Hardy space H1(Rn)

C1 & f &H1�|
[0, 1) n

&sup
j # Z

|Pj ({t f )( } )|&L1( R n) dt�C2 & f &H1 .

Proof. The left side of inequality is obvious from Theorem 1.6 since

sup
j # Z } |[0, 1) n

{&tPj{t f dt }�|
[0, 1) n

sup
j # Z

|{&t Pj{t f | dt.

To prove the right side of the inequality we recall some properties of box
splines. If

cV= :
s

j=1

vj

then

B(x | V )=B(cV&x | V) (4.2)

From (3.4), (3.5) we obtain that

B( } | V )= :
: # Zn

a: B*( }&: | V ),

where a:=B(: | Y). Hence by applying (3.5), (4.2), and fact that a:=a&:

we get

B*(x)=B*(cV&x). (4.3)
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By definition

P0 f= :
: # Zn

( f, B*( }&:)) B( }&: | V).

Since B( } | V) is nonnegative function with compact support and

:
: # Z n

B(x&: | V )=1

there is an N>0 such that

|Pj f (x)|� } :
: # Z n

(_2 j f, B*( }&:)) B(2&jx&: | V ) }
� :

|x&2 j:|<N2 j

|(_2 j f, B*( }&:))|.

From (4.3) we get

|Pj f (x)|� :
|x&2 j:|<N2 j

|( f V B*2 j (2
j:+2 j cV))|.

Hence

&sup
j # Z

|Pj f | &L1(Rn)

�Nn &sup
j # Z

[ f V (B*)2 j ( y ): |x&y |<(N+|cV | ) 2 j ]&L1(Rn)�C & f &H 1 .

Since the norm in Hardy space H1 is invariant under translation this com-
pletes the proof. K
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